HoliSoils supports key stakeholders with science and tools for GHG reporting

Amanita mushrooms growing on ground among green herb

Experts from the Land Use, Land Use Change and Forestry (LULUCF) sector are one of HoliSoils’ main target stakeholders. The LULUCF group at the Joint Research Centre (JRC) Bioeconomy Unit provides science-based support to the European Commission’s services in understanding how forests mitigate and interact with climate change in the context of EU and international climate policies. Many of the results developed in HoliSoils are directly targeted to these experts and HoliSoils has established a good and regular dialogue with the group, not least through Anu Korosuo who represents JRC on the HoliSoils Stakeholder and End-User Advisory Board (SEAB).

Partners from the HoliSoils project were invited to present the project and its results so far at the 2023 JRC LULUCF workshop, held in May. The main purpose of these meetings is to provide understanding on how LULUCF regulation is interpreted and of the methods used by different member states for their GHG inventories. The May workshop focused on the needs and opportunities to enhance LULUCF reporting to support climate change mitigation targets for 2030 and beyond.

Aleksi Lehtonen (Luke) presented the HoliSoils project while Mart-Jan Schelhaas (WUR) presented on EFISCEN-Space, the high-resolution forest resource model being updated as part of the project. Hans Verkerk (EFI), also a partner in HoliSoils, presented the ForestPaths project, of which he is coordinator. HoliSoils is working with ForestPaths and other relevant EU-funded projects to ensure synergies between activities and avoid duplicating efforts.

The LULUCF workshop combined overview sessions on the state-of-art of the GHG inventories and the revised LULUCF regulation. Specific sessions focused on moving to higher Tiers in reporting, and on the use of geographically-explicit data and new advances in remote sensing in GHG inventories.

Interesting for HoliSoils is that countries will need to improve their GHG inventory methods in the near future. While many countries do well with forest biomass reporting, there is room for improvement: most countries use Tier 1 but will need to move to Tier 2 by 2028. HoliSoils is providing tools to support such a transition, with a model ensemble tool currently in a beta phase and soon to be launched. Also of interest is the HoliSoils peat map (and other maps) under development, which will support spatially explicit reporting and improve land-use change estimates by providing soil data, contributing to the reporting needed for biodiversity and emission hot-spots.

Presentations from the workshop are available from JRC’s LULUCF pages.

New webinar series on SOC-sequestration & climate mitigation

WUR webinars

HoliSoils partner organisation, WUR, organize series of three webinars to discuss questions on the SOC-sequestration and climate mitigation: “SOC-sequestration – a win, win, win, win for the climate, soil, and buyers/sellers of carbon credits?”.

The first webinar on the role of SOC- sequestration related to fighting climate change will be on Tuesday 30 May, 9.00 – 10.00 CET.

This first session will explore the climate perspective of SOC-sequestration, with the expert Jan Peter Lesschen.

Click here to join the first webinar!

Is it feasible to increase soil carbon stocks by 4 per 1000 per year?

Soil with seedling

Extreme heatwaves, wildfires, floods, droughts… The effects of climate change are no longer predictions: they are happening right now. And, according to the experts of the Intergovernmental Panel on Climate Change (IPCC), they will continue to happen and become more and more intense in the future.

So, what can we do to stop them?

Most importantly, we need to reduce the emissions of greenhouse gases (GHG), such as carbon dioxide (CO2) from fossil fuel burning and deforestation, and nitrous oxide (N2O) and methane (CH4) from agriculture. But this is still not enough. In order to achieve carbon neutrality (that is, a net zero difference between what we emit and what we put back in the soil) we will need additional efforts to sequester CO2 from the atmosphere and store it in the soil.

This can be done, for example, by avoiding deforestation and improving the management of agricultural soils.


Soils play a crucial role for C sequestration:

  • They store the largest amount of C compared to all other terrestrial ecosystems.
  • They also store twice to three times more C than the atmosphere and – because the soil and the atmosphere interchange C – this means that even small changes in the soil C stocks can have a huge impact on the concentration of CO2 in the atmosphere.
  • C improves the fertility and other functions of the soils, so having soils rich in C is beneficial for food production.

Basically, storing more C in the soil can help to mitigate climate change and feed the world!

How can we restore carbon in the soil?

Carbon is naturally brought to the soil through plant photosynthesis and organic matter deposition. It leaves the soil once microbes and other organisms decompose it and respire it back to the atmosphere. Hence, storing additional soil organic C (SOC) can be done in two ways:

  • By increasing the amount of C entering the soil (e.g., the amount of CO2 fixed by the plants, or the amount of organic material added to the soil)
  • By decreasing the C output from the soil (e.g., decreasing the rate of microbial decomposition)

Researchers have found that the most efficient way to store C is to increase the C input to the soil.

Figure 1 Global carbon cycle between the land and the atmosphere. The values were taken from Ciais et al. (2013). Uncertainty in the atmospheric CO2 growth rate is ± 0.02 Gt C yr-1. Figure adapted from Le Quéré et al. (2018). Icons from www.flaticon.com.

How much should we increase the C input?

Assuming that we aim to increase the SOC stocks by a certain fixed target, we estimated the additional C input required to reach this target, and assessed whether this amount is realistic with current land use management practices. Following the 4 per 1000 initiative, we set the target to an annual 4‰ increase of the SOC stocks.

In order to address these questions, we used mathematical models that simulate the processes that influence the accumulation of C in the soil and estimated the additional C input required to reach a 4‰ objective in Europe.

The methods used

We used data from 16 long-term agricultural experiments where agricultural practices with organic matter addition were carried out for several years under controlled conditions. At these experiments, pedo-climatic conditions were monitored over time in order to see the effect of organic matter addition on the system.

Mathematical models are largely used by soil scientists and policy makers to predict the evolution of SOC stocks with time, following changes in land management practices and climate. They help to better understand the behavior of the system, and to predict its future responses to external changes. However, they are still highly uncertain. This is mainly due to the uncertainty of:

  • The processes described in the models, which are still largely unknown;
  • The data used to run them, such as climate and soil variables;
  • The parameters that are included in the model equations, which are usually considered constant although they actually vary in space and time, and which values are not always related to measurable physical processes.

In order to estimate some of this uncertainty, instead of running one single model we ran a multi-model ensemble, which allowed to consider different ways of representing soil processes.

We also calibrated model parameters in order to correctly reproduce the evolution of measured SOC stocks. This means that we adjusted the values of model parameters to reproduce the conditions of the sites that we studied.

Feasibility of the 4 per 100

On average across the models and across the sites, we found that the C input had to increase by 119% compared to the initial conditions. That is, an additional 1.5 ± 1.2 Mg C ha-1 would need to be annually input to the soil in order to increase the SOC stocks by 4‰ each year.

To give an order of magnitude, we estimated from Zhang et al. (2017) that the annual C input applied to European croplands, derived only from livestock manure, is around 0.3 to 0.9 Mg C ha-1. But this is already applied! Meaning that, if we wanted to provide additional 1.5 ± 1.2 Mg C ha-1, that would need to come from different sources of organic material. Doubling the C input where mineral and organic fertilizers are already applied is unlikely without the implementation of other agricultural practices, such as agroforestry systems, cover cropping, improved crop rotations, and crops with a high belowground biomass. This is the case for Europe, for example, where croplands are usually minerally fertilized and where organic fertilizers are already widely applied.

Figure 2 Annual SOC stock increase (%) for different levels of additional C input in agricultural experiments (black spots) and additional C input required to reach the 4‰ SOC increase according to the 1) non-calibrated multi-model median (MMM) (blue cross) and the 2) calibrated MMM (orange cross). Errors are shown as confidence intervals (CI) The regression line between additional C input and SOC stock increase in the EOM treatments is indicated in the figure (y=m (±〖SD〗_m)∙ x + b ± 〖(SD〗_b)).

Model uncertainties

Concerning the model simulations, we found large uncertainties across models, even when they were calibrated to reproduce the observed SOC stocks of the experiments. In particular, we found that the uncertainty across models was mainly due to the way the models represented (or not) water related variables, such as precipitations and potential evapotranspiration. This indicates that the choice of the hydrological processes included in the models and their representation affect model predictions, and it suggests that major efforts should be made to better represent these processes and reduce their associated uncertainties.

Figure 3 Required additional C input (± standard deviation, SD) relative to the unfertilized control, to reach a mean annual 4‰ SOC stock increase for 30 years across the 16 sites. The bars represent the different models and multi-model median (MMM). The non-calibrated and calibrated configurations are in blue and orange, respectively. For the MMM, the SD bar represents the median SD across models.
Figure 4 Heatmap of the simulated additional C input to reach the 4‰, for each calibrated model and each site. Darker cells show lower C input and lighter cells represent higher C input. Dendrograms above the heatmap represent the relationship of similarity among groups of models, calculated as the minimal correlation distance.

Conclusions and perspectives

Despite uncertainties in model simulations, there is compelling evidence that a radical change in agricultural management will be required to cope with climate change and food security in the near future. In a recent report from the Mission Board for Soil Health and Food, the European Commission was suggested to set ambitious targets to increase SOC stocks and improve the health of European soils. Yet, we are far from being optimistic. The last fifty years of international agreements on the response of world nations to climate change have proven that, no matter how compelling evidence the scientific community provides, indicators of adverse change are still on a rise (Glavovic et al., 2021). Governments need to take action before it is too late.

Diversity in science

In the last decades, thousands of works have been published on the effects of land management, land-use change and climate change on SOC. However, studies are narrowed to a selected number of specific drivers and geographical regions. In fact, studies on agricultural management practices have mostly focused on mineral fertilization, organic amendments, and tillage, while drivers of SOC changes have only occasionally been studied in North and Central Africa, and in the Middle East and Central Asia (Beillouin et al., 2022).

Future research should focus on more local and diversified knowledge on how to preserve and restore SOC stocks, while covering understudied geographical regions.

Besides, increased knowledge on the effects of diversified practices on SOC stock changes, under different pedo-climatic conditions, will help to improve model simulations and provide reliable SOC stock projections under future climate change.

Read more about this in the open access paper published in the European Journal of Soil Science: Multi-modelling predictions show high uncertainty of required carbon input changes to reach a 4‰ target

References and related articles

Beillouin, Damien, Rémi Cardinael, David Berre, Annie Boyer, Marc Corbeels, Abigail Fallot, Frédéric Feder, and Julien Demenois. “A Global Overview of Studies about Land Management, Land‐use Change, and Climate Change Effects on Soil Organic Carbon.” Global Change Biology 28, no. 4 (February 2022): 1690–1702. https://doi.org/10.1111/gcb.15998.

Bruni, Elisa, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu. “Additional Carbon Inputs to Reach a 4 per 1000 Objective in Europe: Feasibility and Projected Impacts of Climate Change Based on Century Simulations of Long-Term Arable Experiments.” Biogeosciences 18, no. 13 (July 2, 2021): 3981–4004. https://doi.org/10.5194/bg-18-3981-2021.

Bruni, Elisa, Bertrand Guenet, Hugues Clivot, Thomas Kätterer, Manuel Martin, Iñigo Virto, and Claire Chenu. “Defining Quantitative Targets for Topsoil Organic Carbon Stock Increase in European Croplands: Case Studies With Exogenous Organic Matter Inputs.” Frontiers in Environmental Science 10 (February 14, 2022): 824724. https://doi.org/10.3389/fenvs.2022.824724.

Chenu, Claire, Denis A. Angers, Pierre Barré, Delphine Derrien, Dominique Arrouays, and Jérôme Balesdent. “Increasing Organic Stocks in Agricultural Soils: Knowledge Gaps and Potential Innovations.” Soil and Tillage Research 188 (May 2019): 41–52. https://doi.org/10.1016/j.still.2018.04.011.

Glavovic, Bruce C., Timothy F. Smith, and Iain White. “The Tragedy of Climate Change Science.” Climate and Development, December 24, 2021, 1–5. https://doi.org/10.1080/17565529.2021.2008855.

Martin, Manuel Pascal, Bassem Dimassi, Mercedes Ŕomàn Dobarco, Bertrand Guenet, Dominique Arrouays, Denis A. Angers, Fabrice Blache, Frédéric Huard, Jean‐François Soussana, and Sylvain Pellerin. “Feasibility of the 4 per 1000 Aspirational Target for Soil Carbon. A Case Study for France.” Global Change Biology, February 4, 2021, gcb.15547. https://doi.org/10.1111/gcb.15547.

Riggers, Catharina, Christopher Poeplau, Axel Don, Cathleen Frühauf, and René Dechow. “How Much Carbon Input Is Required to Preserve or Increase Projected Soil Organic Carbon Stocks in German Croplands under Climate Change?” Plant and Soil 460, no. 1–2 (March 2021): 417–33. https://doi.org/10.1007/s11104-020-04806-8.

Soussana, Jean-François, Suzanne Lutfalla, Fiona Ehrhardt, Todd Rosenstock, Christine Lamanna, Petr Havlík, Meryl Richards, et al. “Matching Policy and Science: Rationale for the ‘4 per 1000 – Soils for Food Security and Climate’ Initiative.” Soil and Tillage Research 188 (May 2019): 3–15. https://doi.org/10.1016/j.still.2017.12.002.

Zhang, Bowen, Hanqin Tian, Chaoqun Lu, Shree R. S. Dangal, Jia Yang, and Shufen Pan. “Global Manure Nitrogen Production and Application in Cropland during 1860–2014: A 5 Arcmin Gridded Global Dataset for Earth System Modeling.” Earth System Science Data 9, no. 2 (September 6, 2017): 667–78. https://doi.org/10.5194/essd-9-667-2017.

Towards a harmonised dataset of forest soil properties to support mapping and modelling in Europe

Profile location map from the dashboard which provides an overview of soil data shared by partners in the framework of the EU Horizon 2020 HoliSoils project.

Forest soils provide important ecosystem services, including biodiversity support, nutrient cycling, carbon sequestration, water regulation and erosion control, which underpin economic sustainability. The health and sustainability of forest ecosystems depend on the health and functioning of forest soils themselves, making their conservation and management essential for the well-being of both natural ecosystems and human societies. Hence it is fundamental to have good information to inform European forest management and policies, such as up-to-date spatial information on forest soils in Europe.

ISRIC – World Soil Information is a partner in the HoliSoils project, working to improve forest soil data for Europe. During the 2nd General Meeting of the HoliSoils project in Barcelona in April 2023, the ISRIC team discussed two major topics to tackle which will yield improved forest soil data for Europe:

  1. How shared forest soil datasets from different sources were cleaned, integrated and harmonised;
  2. How the data will be used to map soil properties of forest soils.

How shared forest soil datasets from different sources were cleaned, integrated and harmonised

Forest soil data shared in the framework of HoliSoils (~ 7.2k points) were processed following updated Extract Transform Load (ETL) procedures implemented for the World Soil Information Service (WoSIS) which is a service provided by ISRIC – World Soil Information. The ETL procedure is visualised below:

Around 3.500 out of 7.200 points are under forest, as identified using the EU Corine Land Cover dataset (for 2018):

Key soil properties such as pH, organic carbon content, bulk density and soil texture of the shared soil profile data can be viewed and queried using a dashboard. The data can be filtered according to various criteria. Importantly, the dashboard also shows the licenses (i.e., open (33%) or restricted (67%)):

Descriptive statistics are presented also for key soil properties:

Luis Calisto, Database development expert at ISRIC, is happy with the achieved results, the soil data provided will increase forest soil knowledge and allow world community to better understand European forest soils.  

How the data will be used to map soil properties of forest soils

For the soil property mapping itself (ongoing), the set of soil profile data provided by HoliSoils will be complemented with forest soil holdings for Europe held in WoSIS, representing ~ 28k profiles to obtain a better spatial coverage:

As indicated by Laura Poggio, senior digital soil mapping and remote sensing expert at ISRIC, for the mapping itself we will use a digital soil mapping approach featuring model tuning, covariates selection and regression random forest to map key soil properties at a resolution of 100 m and assess the spatial uncertainty for each pixel.

Results of the ETL work and soil property mapping will be presented later this year during the Wageningen Soil Conference. Niels Batjes, senior soil science expert and scientific/technical lead of the HoliSoils project at ISRIC, indicated “it is important for stakeholders to have access to quality-assessed, harmonised data when mapping and modelling across countries at continental scale to support decision making towards climate and sustainability goals.” Hence, ISRIC always welcomes new profile data for consideration in WoSIS.

Ultimately, the geo-referenced, harmonised soil profile data and maps will be made freely available through the HoliSoils website. Long-term preservation, and maintenance, of the data after completion of the project will be ensured by ISRIC in its capacity of ICS World Data Centre for Soils.

Firm focus on fitting HoliSoils results for end users

Two years into the project, HoliSoils consortium partners gathered in Barcelona’s beautiful Sant Pau Art Nouveau site for the project’s annual meeting and general assembly.

The focus was on the many upcoming data and results generated by the project and how best these can be developed and made available for those who are likely to use them.  Some early findings are already included in a first HoliSoils policy brief, fine-tuned during the meeting and published subsequently by the European Forest Institute (EFI). The brief shows how targeted management can improve soils’ potential to mitigate climate change.

HoliSoils – Holistic management practices, modelling & monitoring for European Forest Soils – a Horizon 2020 project coordinated by Luke (Finland), is developing a large toolkit of data, models, maps and guidelines. Some of these are crucial updates of already existing tools, while others are yet to be developed. All are available, however, in one click from the project website, which provides direct access to all the new information as soon as it is ready.

The importance of adapting such materials for likely end-users is a crucial element of the project, and was a major focus of this meeting, with the HoliSoils Stakeholder and End-user Advisory Board (SEAB) invited as special guests to the three-day gathering. HoliSoils enjoys the benefit of a very active and engaged SEAB with representatives from 10 organisations joining the meeting, of the 13 current board members. Representatives from FAO, FSC, EUSTAFOR, CPF, ForExt, UPM and EEA attended in person, while JRC, CEPF, Vitoria-Gasteiz City Council engaged in the online sessions.

Partners took advantage of the great opportunity to discuss elements of the project with the SEAB, not least in an informative, dedicated session, HoliSoils results for those who will use them. SEAB members were overwhelmingly positive in their comments about the project, in particular about its holistic approach to ensure that forest soils are considered in forest management and by policy makers as part of a whole forest approach to climate change mitigation.

Over 40 project partners from across Europe attended the meeting, which was hosted by EFI, with representatives of the project’s Uruguayan and Japanese partners making a special effort to travel. As well as updates from the work packages and presentations from the project’s many post-doctoral researchers, the meeting focussed on the maps, models, tools and data being generated by the project, and partners enjoyed a science-communications training session.

The field trip on the third day visited one of the HoliSoils test sites, the Llobera study site, which is a demonstrative forest management stand for integrated fire management. Different management options are being tested to reduce fuel load and break vertical fuel continuity to make these forests resistant to wildfires. At the same site, HoliSoils experiments monitoring soil respiration and non-trenched soils will give insights into the effects of different forest treatments on organic carbon.

A second stop in the field was to the Santa Coloma de Queralt wildfire site, an area which was badly burnt in 2021. The discussion centred on wildfire effects on soils and post-fire management activities for soil protection and forest regeneration. The field trip was organised by CTFC and the University of Barcelona in collaboration with University of Lleida and Diputació de Barcelona.

Browse all the photos from the meeting!

New funding opportunities within the EU Mission ‘A Soil Deal for Europe’


The European Union developed the Mission “A Soil Deal for Europe” to lead a transition towards healthy soils by 2030. Currently between 60% and 70% of soils in the EU are considered unhealthy. This Mission intends to foster sustainable soil management to ensure a bright future of our soils.

To achieve these goals, the EU opened new funding opportunities to contribute to this Mission, focusing on these work areas:

  • subsoil;
  • soil pollution and digital tools; 
  • innovations to prevent and combat desertification;
  • soil-friendly practices in horticulture;
  • spatial planning;
  • cultural and creative initiatives for bringing communities closer to soil, and establish the first wave of Living Labs.

Moreover, two joint calls have been established with the Mission “Restore our Ocean and Waters by 2030” and the Mission “Adaptation to Climate Change”.

Have a look at the 2023 Call for Proposals!

Apply with your project proposal by 20 September 2023!

Post-doctoral opportunity in forest soil biological activity and GHG exchange

Forest soil

Natural Resources Institute Finland (Luke) is a research organisation working to promote bioeconomy and sustainable use of natural resources. Luke is looking for a post-doctoral researcher focusing on soil element cycles and GHG dynamics. The application deadline is 14 December 2022, at 4.00 pm Finnish time (EET).

Job Description

Luke has open positions for 1-2 post-doc researchers in a multidisciplinary research team, which develops sustainable land-use and ecosystem management practices. The team has several ongoing international projects (including Benchmarks and HoliSoils), where it executes field experiments on both peatland and upland forests to test management regimes and to study ecosystem processes. The team develops models to predict management impacts on ecosystem water, carbon and GHG fluxes. The post-doctoral researcher will be engaged in an active international collaboration that aims at improving the scientific knowledge about soil processes, soil indicators, and the effects of management on forest soils.

The researcher will study how forest management affects soil element cycles, GHG fluxes and their drivers. The researcher will:

  1. Implement field experiment, where effects of management practices on soil biological activity and GHG fluxes are studied;
  2. Analyze obtained empirical data;
  3. Evaluate and develop soil indicators;
  4. Participate in developing mathematical models that describe soil processes.

The researcher will also be responsible for scientific writing and reporting of the results as a lead author.

The vacancy is initially for 2 years with a possibility of one year continuation (2+1).


Luke is seeking a highly motivated post-doctoral researcher with good understanding on biogeochemical cycles, soil processes and their drivers (including microbial communities and their processes). Knowledge on ecosystem studies, experience in GHG data analysis and understanding of soil processes is essential. The applicant should have knowledge on the factors that control soil element cycles, and also understand how experiments and soil measurements can inform process models. Understanding of peatland microbial processes is an asset. Competence in scientific writing has to be shown by a good publication record.

The applicant should be able to steer their own study and experimental work. Good communication skills, as well as ability to work as a part of international multidisciplinary research team are required. Data analysis and programming skills (e.g. R, Python), and understanding of microbial processes and isotope research methods are considered as assets.

Read more about this open position and find out how to apply

Post-doctoral opportunity in soil element cycles and GHG dynamics

Forest soil

Natural Resources Institute Finland (Luke) is a research organisation working to promote bioeconomy and sustainable use of natural resources. Luke is looking for a post-doctoral researcher focusing on soil element cycles and GHG dynamics. The application deadline is 27 September 2022, at 4.00 pm Finnish time (EEST).

Work tasks

Luke has an open position for a post-doc researcher in a multidisciplinary research group of more than ten scientists. The group develops sustainable land-use and ecosystem management practices in several ongoing projects, including HoliSoils and SOMPA. The projects comprise field experiments on both peatland forests, where varied management regimes (including continuous cover forestry) are tested, and on mineral soils, where ecosystem processes are studied. The group also develops models to predict the impacts on ecosystem water, carbon and greenhouse gas (GHG) fluxes, especially focusing on peat soils. The post-doctoral researcher will be engaged in an active international collaboration that aims at improving the scientific knowledge base on soil processes and the effects of management practices on forest soils.

The researcher will study how ecosystem management affects soil element cycles, GHG fluxes and their drivers. The work will be focused on processes in managed peatland forests. The researcher will implement a field experiment, where effects of management practices on soil GHG fluxes and drivers of peat decomposition processes are studied, analyse the obtained empirical data, and participate in developing mathematical models that describe soil processes. The researcher will be responsible for scientific writing and reporting of study results as a lead author.


Luke is looking for a highly motivated post-doctoral researcher with good understanding on biogeochemical cycles, soil processes and their drivers. Knowledge on ecosystem studies, experience in GHG data analysis and understanding of soil processes is essential. The applicant should have knowledge on the controls of soil element cycles and how experiments and soil measurements can inform process models. Understanding of peatland microbial processes is an asset. Competence in scientific writing should be proven by a good publication record.

The applicant should be able to steer their own study and experimental work. Good communication skills, as well as an ability to work as a part of international multidisciplinary research team are needed. Data analysis and programming skills (e.g. R, Python) and understanding of microbial analyses and isotope research are advantages.

How to apply?

The reference number for this position is 30-289-2022.

The application deadline is 27 September 2022, 4.00 pm Finnish time (EEST).

Send your digital application

You may also apply for this position by submitting your application to the address below. The job reference of the role must be cited both in the actual application and on the envelope. Applications will not be returned.

Luonnonvarakeskuksen kirjaamo
Latokartanonkaari 9
00790 Helsinki, FINLAND

Please attach your application letter and CV.

More information

How can we strengthen the contribution of forests in reaching EU climate goals?

Wood construction


Start: 3:00 PM (CET) 20 September 2022
End: 4:30 PM (CET) 20 September 2022


European Forest Institute
Website: https://efi.int/


Online / Zoom


The European Union has set ambitious targets to reduce greenhouse gas emissions by at least 55% in 2030 and to become climate neutral by 2050. The European Forest Institute organised a ThinkForest event to explore what forests can contribute to achieving these climate goals.

Forests and forestry play three important roles in climate change mitigation. First, reducing deforestation and forest degradation lowers GHG emissions. Second, forest management and restoration can maintain or enhance forest carbon stocks and sinks. Third, improving the use of wood products can store carbon over the long-term, and avoid emissions by substituting emissions-intensive materials.

Our ThinkForest event will ask:

  • How much can forest-based activities contribute to climate change mitigation?
  • What role do policies play?
  • How can we maximise forest-based climate change mitigation nationally/locally?

In this occasion, the coordinator of the ForestPaths-project, Hans Verkerk, will present a new study titled “Forest-based climate change mitigation and adaptation in Europe”.

Get to know the European Union’s Mission ‘A Soil Deal for Europe’

roots of a tree in the soil

Soils are crucial for strong biodiversity, functional food systems, clean water, and climate resilience. However, only between 30% and 40% of the soils in the European Union are estimated to be healthy: a careful soil management is therefore necessary to safeguard this precious resource for our future.

To lead the transition towards healthy soils by 2030, A Soil Deal for Europe was established with the goal to set up one hundred living labs and lighthouses. These facilities are places where experts can experiment on the ground and their aim is to co-produce knowledge, test solutions, and determine their value in real-life circumstances.

Moreover, this EU Mission intends to achieve this transition towards healthy soils by funding research and innovations, establish a common European framework for soil monitoring, and raising awareness of the relevance of soils.

Discover more details on living labs and lighthouses, the full list of objectives of the mission and its relevance for the Sustainable Development Goals and the European Green Deal.

Read the Mission Implementation Plan to discover the details on how these goals can be achieved.